∿STORM AND LONG-BASELINE NEUTRINOS

Sam ZellerFermilab

vSTORM Workshop September 21, 2012

- there are some obvious synergies
- will focus on the unique information that vSTORM can provide on $on^{(\frac{1}{V_e})}$ and $on^{(\frac{1}{V_u})}$ interaction cross sections as it relates to LBL physics

Long-Baseline Neutrino Physics

- there are some big questions we will be trying to answer by studying neutrino transitions across increasingly large distances
 - measure ν oscillation parameters more precisely & understand whether our 3ν picture is correct or not
 - determine the ν mass ordering
 - discover whether ν 's violate CP

enabled now that we know θ_{13} is non-zero

accelerator based experiments:

- now: ICARUS, MINOS, OPERA, T2K
- soon: MINOS+, NOvA
- future: Hyper-K, LBNE, LBNO

Oscillation Formula

• in order to be sensitive to these effects (MH and $\cancel{\mathcal{CP}}$), LBL exps will be looking for the conversion of ν_μ to ν_e (and $\overline{\nu}_\mu$ to $\overline{\nu}_e$) over large distances

 θ_{13} is the "gate-keeper"

CP violating phase, δ

matter effects ___ neutrino mass ordering

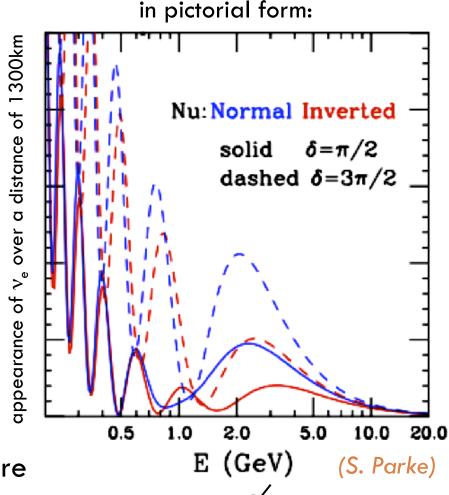
$$P(\nu_{\mu} \to \nu_{e}) \cong \sin^{2} 2\theta_{13} T_{1} - \alpha \sin 2\theta_{13} T_{2} + \alpha \sin 2\theta_{13} T_{3} + \alpha^{2} T_{4}$$

$$T_{1} = \sin^{2} \theta_{23} \frac{\sin^{2}[(1 - x_{\nu})\Delta]}{(1 - x_{\nu})^{2}} ,$$

$$T_{2} = \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x_{\nu}\Delta)}{x_{\nu}} \frac{\sin[(1 - x_{\nu})\Delta]}{(1 - x_{\nu})} ,$$

$$T_{3} = \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x_{\nu}\Delta)}{x_{\nu}} \frac{\sin[(1 - x_{\nu})\Delta]}{(1 - x_{\nu})} ,$$

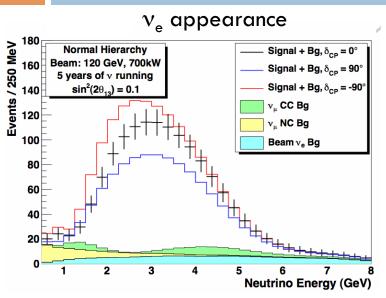
$$T_{4} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x_{\nu}\Delta)}{x_{\nu}^{2}} .$$

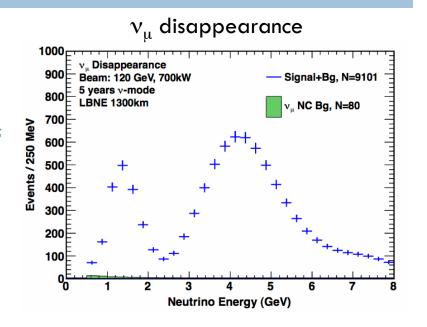

$$\alpha \equiv \Delta m_{21}^{2} / \Delta m_{31}^{2} \sim 1/30 \qquad x_{\nu} \equiv \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m^{2}}$$

How Do We Do This?

- \bullet measure spectrum of $\nu_{\rm e}$ observed
- MH effect largest in 1st osc max P effect largest in 2nd osc max
- need to to probe a range of ∨
 E's to disentangle various effects
- examine for both neutrino and antineutrino scattering

• no longer trying to simply observe $\overset{\circ}{\sim}$ 0.5 1.0 2.0 a signal, but want to actually measure $\overset{\circ}{\sim}$ E (GeV distortions in both $v_{\rm e}$ and $\overline{v}_{\rm e}$ due to mass ordering and $\overline{\mathcal{L}}$ P



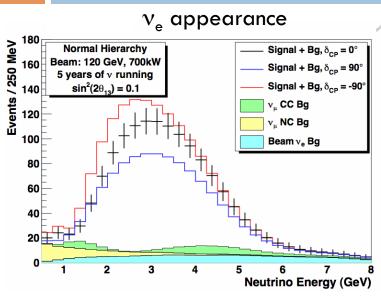

Example: LBNE

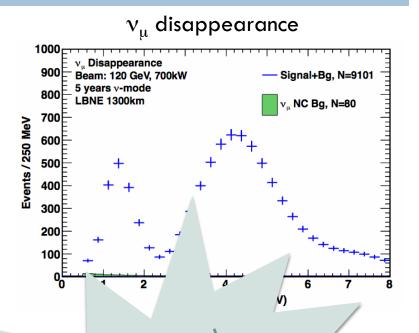
(E. Worcester, Z. Isvan)

5

examples
of what signals
might look like
in a 34kton
LAr TPC
at 1300km

• goals:


- measure full oscillation pattern in both channels, precisely constraining mixing angles, mass differences
- search for \mathcal{L} P both by measuring δ_{CP} and by explicitly observing differences between ν and $\overline{\nu}$ oscillations
- cleanly separate matter effects from CP-violating effects


Example: LBNE

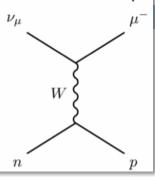
(E. Worcester, Z. Isvan)

6

examples
of what signals
might look like
in a 34kton
LAr TPC
at 1300km

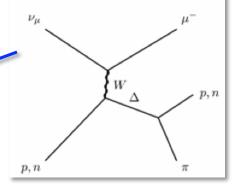
• goals:

- measure full oscillation pattern in bonprecisely constraining mixing angles, m
- search for $\angle P$ both by measuring δ_{CP} and \overline{v} observing differences between v and \overline{v}
- cleanly separate matter effects from CP-viol ting

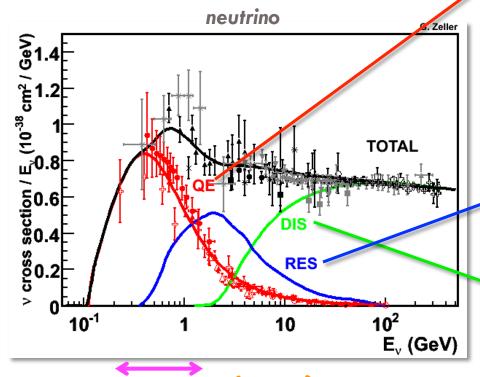

fects

in energies from -0.5 to 6 GeV

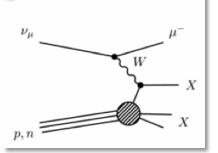
Complicated Region

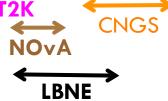

CC Quasi-elastic

nucleon changes, but doesn't break up

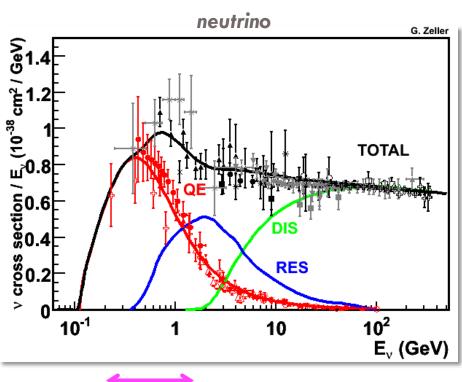


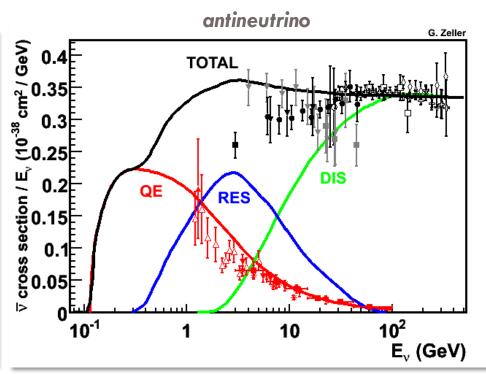
CC Single pion

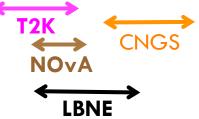

nucleon excites to resonance state



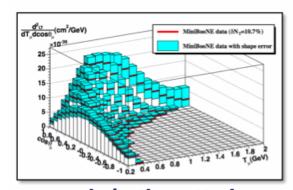
(event samples contain contributions from multiple reaction mechanisms)


CC Deep Inelastic



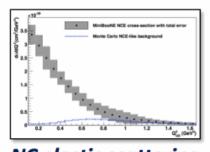


Current Knowledge

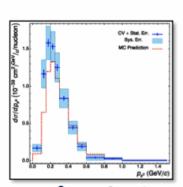

• σ_{v} 's are not particularly well-constrained in this region but situation has been improving (availability of much higher statistics data on nuclear targets!)

华

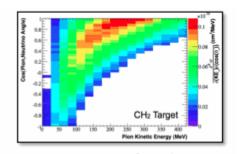
MiniBooNE

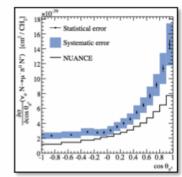

• has made some of the 1st measurements of full kinematics for these

reactions



quasi-elastic scattering
 Phys. Rev. Lett. 100, 032301 (2008)
 Phys. Rev. D81, 092005 (2010)


• also, σ_v measurements from ArgoNeuT, ICARUS, K2K, MINERvA, MINOS, NOMAD, NOvA ND, SciBooNE, T2K ND!


NC elastic scattering - Phys. Rev. **D82**, 902005 (2010)

NC π⁰ **production**- Phys. Lett. **B664**, 41 (2008)
- Phys. Rev. **D81**, 013005 (2010)

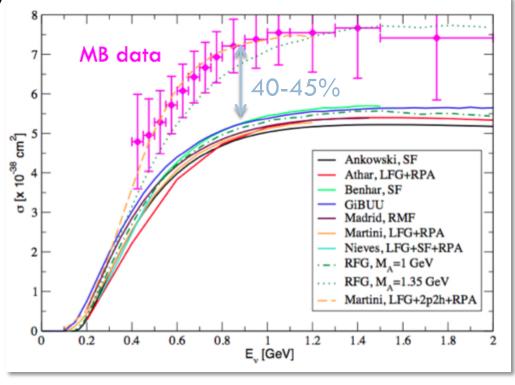
CC π⁺ **production**- Phys. Rev. Lett. **103**, 081801 (2009)
- Phys. Rev. **D83**, 052007 (2011)

CC π⁰ **production**- Phys. Rev. D83, 052009 (2011)

• want to pick one example to help motivate why $\sigma_{\!\scriptscriptstyle V}$ are important

QE Scattering

• QE scattering is just one example that we shouldn't assume that we know everything about ν interaction cross sections


plus, has been a hot topic lately

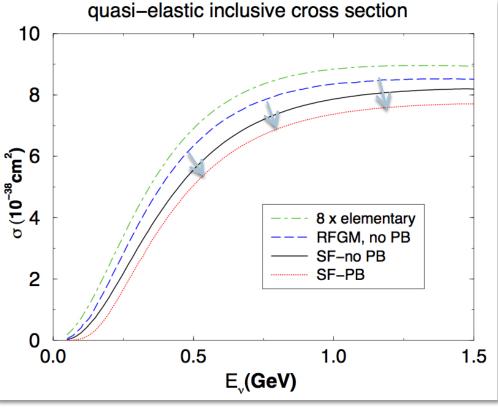
MiniBooNE data is the 1st time have measured the v QE σ on a nuclear target below 2 GeV

 σ's are appreciably larger than conventional approaches

(increased QE rates also seen in K2K, MINOS, SciBooNE)

 community has been working to understand these results

(L. Alvarez-Ruso, NuFact11)

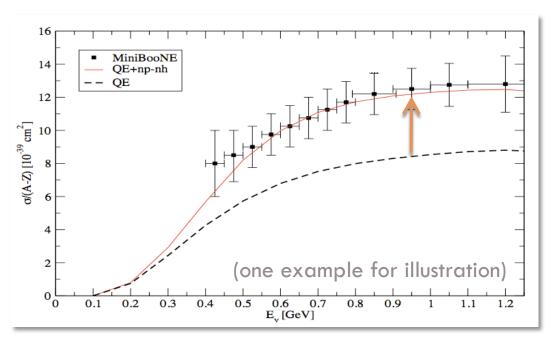

#

QE Scattering

 caused problems because has long been thought that nuclear

effects decrease the σ

$$\nu_{\mu} \cap \rightarrow \mu^{-} \rho$$



(O. Benhar, arXiv:0906.3144)

"New" Source of Nuclear Effects?

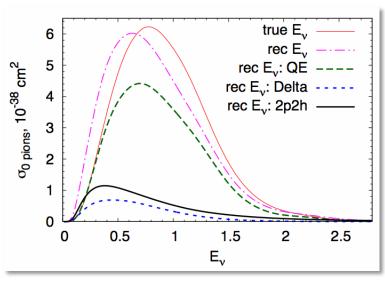
12

• while traditional nuclear effects decrease σ_v , it has been appreciated that there are processes that can increase the total yield

(Martini et al., arXiv:1202.4745)

• increased σ stemming from fact that the incoming ν can interact with <u>more than one</u> nucleon in the target nucleus

(i.e., effects not included in the independent particle approaches we have been using for decades)


has been known in e⁻ scattering
 Carlson et al., PRC 65, 024002 (2002)

What Does This All Mean?

13

- in this one example, even something as simple as QE scattering isn't as simple as we thought
 - discovered a "new" source of nuclear effects that can significantly increase the σ
 - idea that could be missing $\sim\!40\%$ of σ in our neutrino simulations is a big deal
- good news: expect larger event yields
- bad news: need to understand the underlying physics
- (1) impacts E_V determination

 ex: Mosel/Lalakulich 1204.2269, Martini et al. 1202.4745,
 Lalakulich et al. 1203.2935, Leitner/Mosel PRC81, 064614 (2010)
- (2) effects will be different for v vs. \overline{v} (at worse, could produce a spurious \mathscr{D} effect)
- (3) could impact $\nu_{\rm u}$ and $\nu_{\rm e}$ differently?

(Lalakulich, Gallmeister, Mosel, 1203.2935)

华

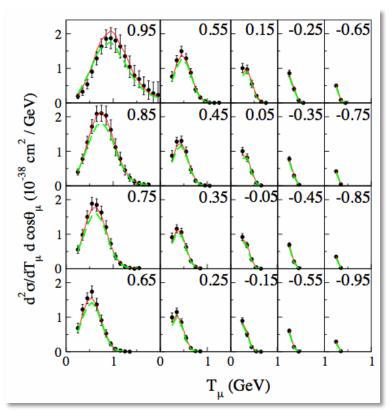
Theory Calculations In the Past Year

• this is something that needs to get sorted out and people are working

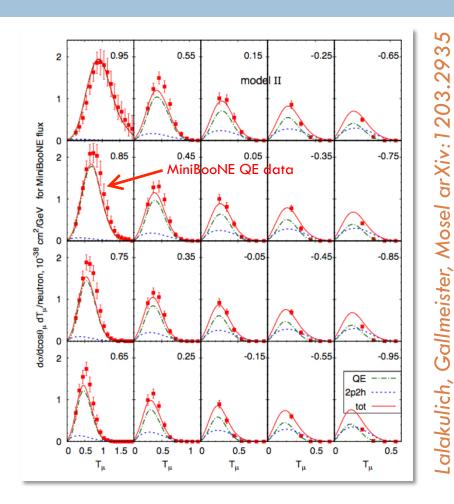
hard on this ...

- Lalakulich, Mosel, arXiv:1208.3678
- Bodek et al., arXiv:1207.1247
- Ankowski, PRC 86, 024616 (2012)
- Butkevich, arXiv:1204.3160
- Lalakulich et al., arXiv:1203.2935
- Mosel, arXiv:1204.2269, 1111.1732
- Barbaro et al., arXiv:1110.4739
- Giusti et al., arXiv:1110.4005
- Meloni et al., arXiv:1203.3335, 1110.1004
- Martini et al., arXiv:1202.4745, 1110.0221, 1110.5895, PRC 81, 045502 (2010)
- Paz, arXiv:1109.5708
- Sobczyk, arXiv:1201.3673, 1109.1081, 1201.3673
- Nieves et al., PRD 85, 113008 (2012), 1106.5374, 1110.1200, PRC 83, 045501 (2011)
- Bodek et al., arXiv:1106.0340
- Amaro, et al., arXiv:1112.2123, 1104.5446, 1012.4265, PL B696, 151 (2011)
- Antonov, et al., arXiv:1104.0125
- Benhar, et al., arXiv:1012.2032, 1103.0987, 1110.1835
- Meucci et al., arXiv:1202.4312, PRC 83, 064614 (2011)
- Ankowski et al., Phys. Rev. C83, 054616 (2011)
- Alvarez-Ruso, arXiv:1012.3871
- Martinez et al., Phys. Lett **B697**, 477 (2011) + ...

• >50 theoretical papers on the topic of QE ν -nucleus scattering in the past year or so


(disclaimer: this is not a complete list!)

$\text{d}^2\sigma/\text{d}\text{T}_\mu\text{d}\theta_\mu$

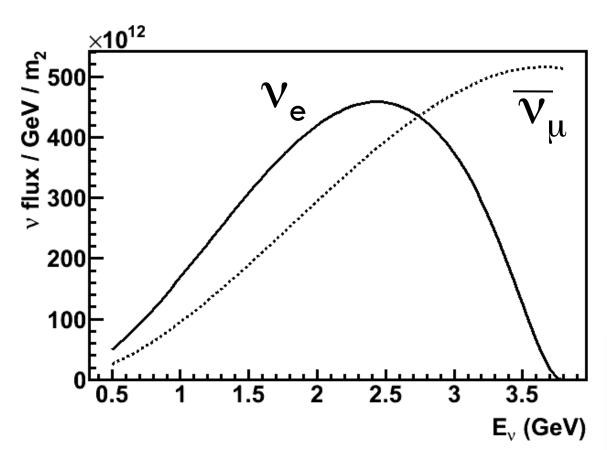


15

• this is the 1st time we've had this sort of information available

Nieves, Simo, Vacas, PL B707, 72 (2012)

• we need measurements at other $\rm E_{\nu}$, A, plus hadronic side, and $\rm v_e$'s!



Neutrino Scattering on Nuclei

- I bring this up because this isn't just boiler plate physics
- this is why the σ_v program at MINERvA is so important + LAr (ArgoNeuT, MicroBooNE, ICARUS) + NDs (NOvA, T2K)
- these σ_{ν} measurements are being made in accelerator-based beams produced for ν oscillation physics \Longrightarrow predominantly ν_{μ} by construct
 - 1 do not have measurements of $v_{\rm e}$ cross sections (infer from v_{μ})
 - 2 σ_{ν} uncertainties limited by knowledge of incoming ν flux (uncertainties in π , K production in the beam are a limiting factor)
- ullet these are two areas where u STORM can play an important role

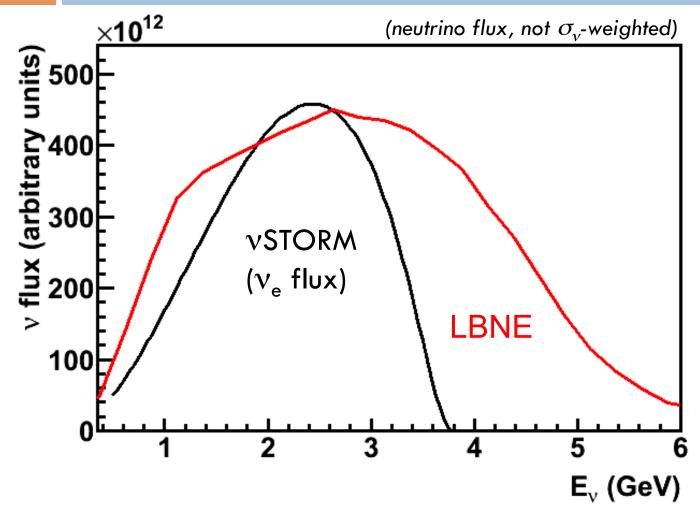
vSTORM Neutrino Beam

3.8 GeV μ^+ stored, 150m straight, flux at 100m (thanks to Chris Tunnell!)

- provides well-known beams of neutrinos
 antineutrinos
- and a unique high statistics source of v_e 's

 μ^+ μ^-

Channel	$N_{ m evts}$
$ar{ u}_{\mu} \; ext{NC}$	844,793
ν_e NC	1,387,698
$ar{ u}_{\mu} { m CC}$	2,145,632
ν_e CC	3,960,421


Channel	$N_{ m evts}$
$\bar{ u}_e \; ext{NC}$	709,576
$ u_{\mu} \; { m NC}$	1,584,003
$\bar{\nu}_e$ CC	1,784,099
$ u_{\mu} \; { m CC}$	4,626,480

event rates per 1E21 POT, 100 ton at 50m

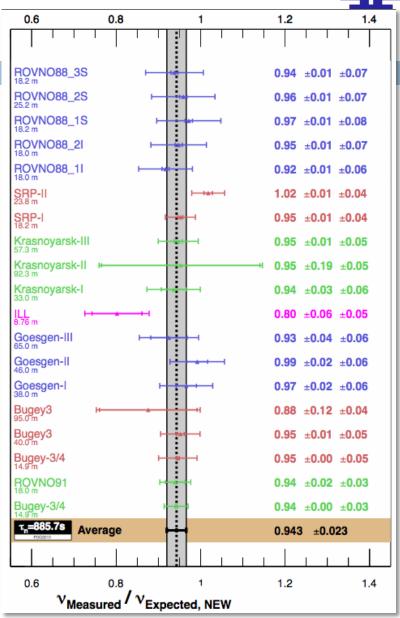
Direct Comparison

- in LBNE, care about neutrino energies from ~0.5 to 6 GeV
- νSTORM nicely overlaps a large fraction of this region!

• vSTORM can make some important v_e measurements as input (also v_μ)

What Do We Know About v_e Cross Sections?

- have seen that there have been some interesting results being unearthed by new investigations of ν_μ scattering (ex. QE), so what do we know about ν_e 's?
- our current information on v_e (and $\overline{v_e}$) cross sections comes from 3 main sources ... scattering measurements made on:
 - (1) free protons (IBD)
 - (2) deuterium
 - (3) + a few other nuclear targets (mostly carbon)
- will spend a few slides on surveying what we know about $\nu_{\rm e}$ σ 's since this is not something we typically talk about


去

Inverse Beta Decay

- important reaction for detection of solar and reactor neutrinos
- IBD cross section measured in reactor experiments in mid 80's-90's (possible at short distances <100m from the reactor where oscillation effects are negligible)

$$\overline{V}_e p \longrightarrow e^+ n$$

- consistent to within $\sim 5\%$ of the theoretical calculations
- \sim 10 MeV so not really the energies we care about for LBL ν physics
- what about more complex targets?

(Formaggio & Zeller, Rev. Mod. Phys. 2012)

‡

Deuterium

- particularly important role in solar neutrino oscillations (e.g., SNO)
- only one measurement of $\nu_{\rm e}$ cross section on deuterium

(Willis et al., PRL 44, 522 (1980), LAMPF stopped μ^+ beam)

$$\sigma(v_e d \rightarrow e^- p p) = (0.52 \pm 0.18) \times 10^{-40} cm^2$$

(35% measurement)

ullet several measurements of $\overline{\nu_{\rm e}}$ cross section on deuterium from reactors

Experiment	Measurement	$\sigma_{\rm fission}~(10^{-44}~{ m cm}^2/{ m fission})$	$\sigma_{ m exp}/\sigma_{ m theory}$
Savannah River (Pasierb et al., 1979)	$ar{ u}_e ext{CC}$	1.5 ± 0.4	0.7 ± 0.2
ROVNO (Vershinsky et al., 1991)	$ar{ u}_e ext{CC}$	1.17 ± 0.16	$ 1.08 \pm 0.19 $
Krasnoyarsk (Kozlov et al., 2000)	$ar{ u}_e ext{CC}$	1.05 ± 0.12	$\left \ 0.98\pm0.18\ \right $
Bugey (Riley et al., 1999)	$ar{ u}_e ext{CC}$	0.95 ± 0.20	0.97 ± 0.20
Savannah River (Pasierb et al., 1979)	$ar{ u}_e ext{NC}$	3.8 ± 0.9	0.8 ± 0.2
ROVNO (Vershinsky et al., 1991)	$ar{ u}_e ext{NC}$	2.71 ± 0.47	$igg 0.92 \pm 0.18 igg $
Krasnoyarsk (Kozlov et al., 2000)	$ar{ u}_e ext{NC}$	3.09 ± 0.30	$igg 0.95 \pm 0.33 igg $
Bugey (Riley et al., 1999)	$ar{ u}_e ext{NC}$	3.15 ± 0.40	$\boxed{1.01 \pm 0.13}$

(~20% measurements)

again,
 all at very
 low E_v

(Formaggio & Zeller, Rev. Mod. Phys. 2012)

华

Other Nuclear Targets

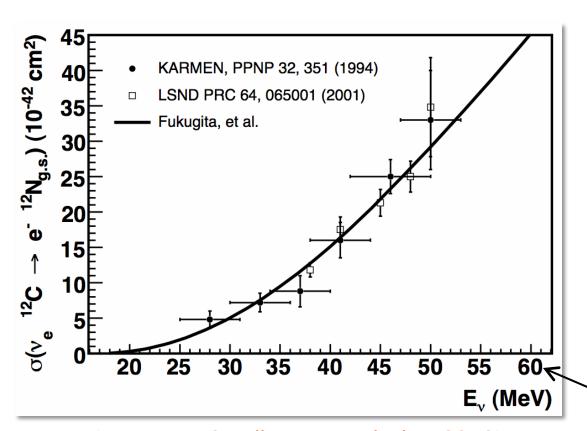
- $\nu_{\rm e}$ measurements from stopped π/μ (< 50 MeV) and radiological sources
- flux-averaged cross section measurements


Isotope	Reaction Channel	Source	Experiment	Measurement (10 ⁻⁴² cm ²)	Theory (10^{-42} cm^2)	
$^{2}\mathrm{H}$	$^2{ m H}(u_e,e^-){ m pp}$	Stopped π/μ	LAMPF	$52 \pm 18 ({ m tot})$	54 (IA) (Tatara et al., 1990)	
¹² C	$^{12}\text{C}(\nu_e, e^-)^{12}\text{N}_{\text{g.s.}}$	Stopped π/μ	KARMEN	$9.1 \pm 0.5 ({ m stat}) \pm 0.8 ({ m sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)	next
		Stopped π/μ	E225	$10.5 \pm 1.0 ({\rm stat}) \pm 1.0 ({\rm sys})$	9.2 [EPT] (Fukugita et al., 1988).	> •
		Stopped π/μ	LSND	$8.9 \pm 0.3 ({\rm stat}) \pm 0.9 ({\rm sys})$	8.9 [CRPA] (Kolbe et al., 1999b)	J page
	$^{12}C(\nu_e, e^-)^{12}N^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6 ({ m stat}) \pm 0.5 ({ m sys})$	5.4-5.6 [CRPA] (Kolbe et al., 1999b)	
		Stopped π/μ	E225	$3.6 \pm 2.0 ({ m tot})$	4.1 [Shell] (Hayes and S, 2000)	
		Stopped π/μ	LSND	$4.3 \pm 0.4 ({ m stat}) \pm 0.6 ({ m sys})$		
	$^{12}C(\nu_{\mu},\nu_{\mu})^{12}C^{*}$	Stopped π/μ	KARMEN	$3.2 \pm 0.5 { m (stat)} \pm 0.4 { m (sys)}$	2.8 [CRPA] (Kolbe et al., 1999b)	
	$^{12}C(\nu, \nu)^{12}C^*$	Stopped π/μ	KARMEN	$10.5 \pm 1.0 ({ m stat}) \pm 0.9 ({ m sys})$	10.5 [CRPA] (Kolbe et al., 1999b)	
	$^{12}\mathrm{C}(u_{\mu},\mu^{-})\mathrm{X}$	Decay in Flight	LSND	$1060 \pm 30(\text{stat}) \pm 180(\text{sys})$	1750-1780 [CRPA] (Kolbe et al., 1999b)	
					1380 [Shell] (Hayes and S, 2000)	
					1115 [Green's Function] (Meucci et al., 2004)	
	19 m/					
	$^{12}\mathrm{C}(\nu_{\mu},\mu^{-})^{12}\mathrm{N}_{\mathrm{g.s.}}$	Decay in Flight	LSND	$56 \pm 8(\mathrm{stat}) \pm 10(\mathrm{sys})$	68-73 [CRPA] (Kolbe et al., 1999b)	
56 m	56m (->56m	G: 1 /	TA A DA CDAT	050 100() 10()	56 [Shell] (Hayes and S, 2000)	
⁵⁶ Fe	56 Fe $(\nu_e, e^-)^{56}$ Co	Stopped π/μ	KARMEN	$256 \pm 108(\text{stat}) \pm 43(\text{sys})$	264 [Shell] (Kolbe et al., 1999a)	
⁷¹ Ga	$^{71}{ m Ga}(u_e,e^-)^{71}{ m Ge}$	⁵¹ Cr source		$0.0054 \pm 0.0009 (tot)$	0.0058 [Shell] (Haxton, 1998)	0.700 1551/
		⁵¹ Cr	SAGE	$0.0055 \pm 0.0007 (tot)$	0.0000 [7] 11] (7) 1 10.000	~700 keV
105	107	³⁷ Ar source	SAGE	$0.0055 \pm 0.0006(tot)$	0.0070 [Shell] (Bahcall, 1997)	Υ
^{127}I	$^{127}{ m I}(u_e,e^-)^{127}{ m Xe}$	Stopped π/μ	LSND	$284 \pm 91 ({ m stat}) \pm 25 ({ m sys})$	210-310 [Quasi-particle] (Engel et al., 1994)	

Formaggio & Zeller, Rev. Mod. Phys. 2012)

Carbon

• only existing check of E $_{\nu}$ -dependence of ν_{e} cross section: KARMEN and LSND measured ground state transition from μ DAR neutrinos

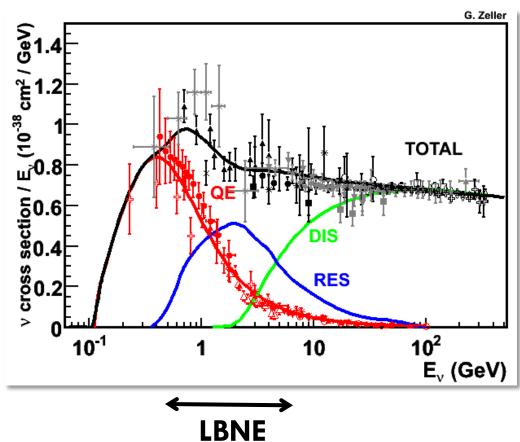

$$v_e^{12}C \rightarrow e^{-12}N_{g.s.}$$

(Formaggio & Zeller, Rev. Mod. Phys. 2012)

Carbon

• only existing check of E $_{\nu}$ -dependence of ν_{e} cross section: KARMEN and LSND measured ground state transition from μ DAR neutrinos

(Formaggio & Zeller, Rev. Mod. Phys. 2012)


$$v_e^{12}C \rightarrow e^{-12}N_{g.s.}$$

- there are not many $v_e \sigma$ measurements
- ones that exist are all below $\sim 50 \text{ MeV}$
- the bulk of measurements are flux-averaged
 - would really like to have this type of spectral info

Moving Forward

one would really like:

- (1) a check of v_e σ at higher energies \sim 1 GeV
- (2) precise knowledge of E_{ν} dependence of ν_{e} σ ; in particular, need to model multiple contributions to accurately predict energy spectrum of a ν_{e} oscillation sample for LBL physics

v_e Event Fractions in vSTORM

• sources of $\nu_{\rm e}$ events produced by $\nu {\rm STORM}$ 3.8 GeV μ^{+} beam

production mode	# fraction of total (%)
$\overline{\mathrm{QE}\;(u_en o e^-p)}$	23.3
NC elastic $(\nu_e N \to \nu_e N)$	10.0
CC resonant π^+ $(\nu_e N \to e^- N \pi^+)$	25.5
CC resonant π^0 $(\nu_e n \to e^- p \pi^0)$	5.6
NC resonant π^0 ($\nu_e N \to \nu_e N \pi^0$)	6.4
NC resonant $\pi^{\pm} (\nu_e N \to \nu_e N \pi^{\pm})$	4.5
CC DIS $(\nu_e N \to e^- X, W > 2)$	8.3
NC DIS $(\nu_e N \to e^- X, W > 2)$	2.7
other CC	9.9
other NC	3.8
total CC	72.7
total NC	27.3

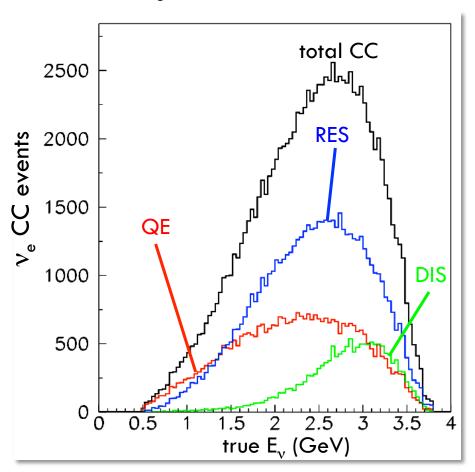
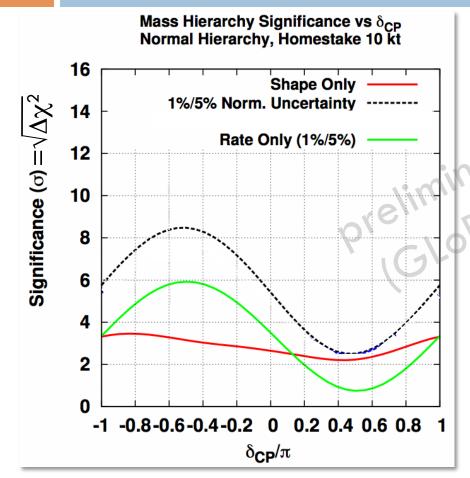
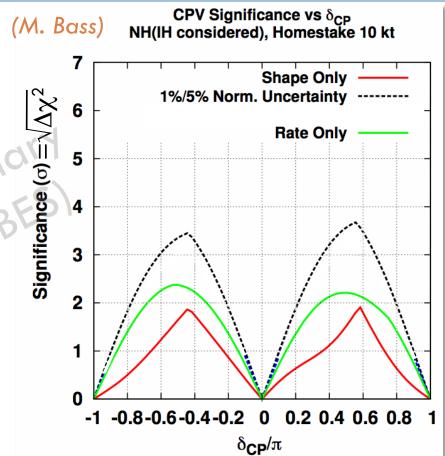

similar to reactions of interest in LBNE oscillation region

Table 1: NUANCE-predicted ν_e event rate fractions for a 3.8 GeV μ^+ beam, 100m from the source. Processes are defined at the initial neutrino interaction vertex and do not include final state effects. These estimates have been integrated over the ν STORM flux spectrum and do no include detector efficiency or acceptance corrections.

v_e Event Fractions in vSTORM

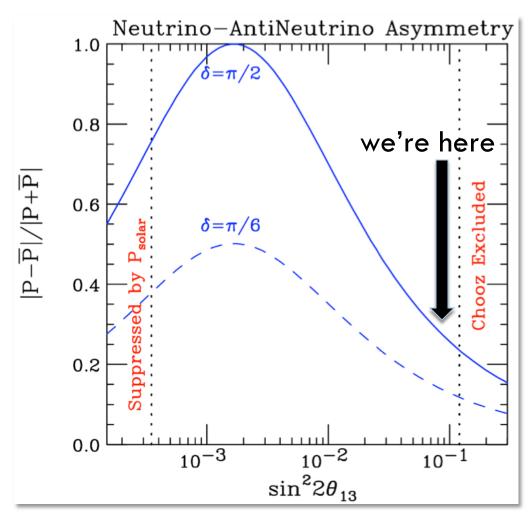
• sources of $\nu_{\rm e}$ events produced by νSTORM 3.8 GeV μ^{+} beam




out of the CC modes:

- * 56% resonant
- * 32% QE
- * 12% DIS
- each of these processes have different models, different final states, different E_ν-dep
- how important is this?

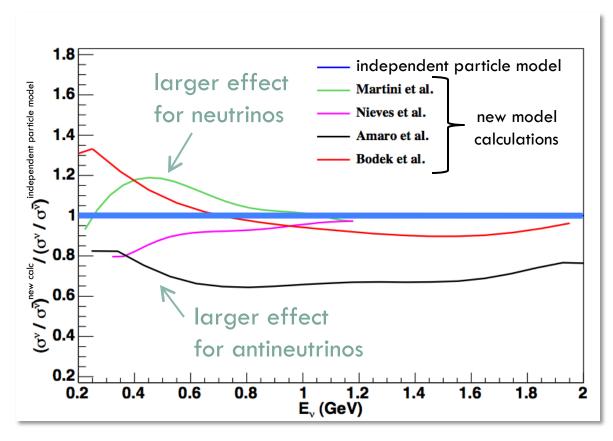
How Much Do We Rely on Spectral Info? ***



• these are not just counting experiments anymore, will increasingly rely on how well we know event spectra $\Longrightarrow \sigma(E_v)$ from 0.5-6 GeV

Also Need to Know $\overline{\nu}_{\rm e}$

(not including matter effects & backgrounds)

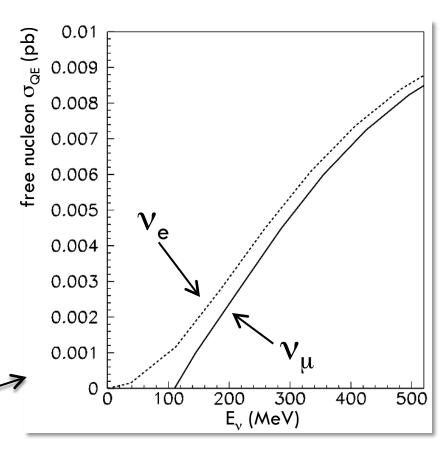

(S. Parke)

- large θ_{13} means we can expect large signals
- but it also means that the asymmetry we're trying to detect is very small $(asymmetry \sim 1/sin\theta_{13})$
- large θ_{13} isn't making our life any easier
- $\sin^2 2\theta_{13}$ ~0.1 means we will be trying to detect a v_e - \overline{v}_e difference on the order of ~20% or less (depending on δ)

Antineutrino/Neutrino QE Ratio

• current models give different predictions for $\overline{\nu}_{\mu}/\nu_{\mu}$ QE scattering (for ex., for LBNE we assume we will know this ratio to ~1%)

- the situation is unclear and will need to get resolved ...
- certainly, better data on v_e and \overline{v}_e will be important for future $\angle P$ measurements


(J. Grange)

ν_e/ν_μ Cross Sections

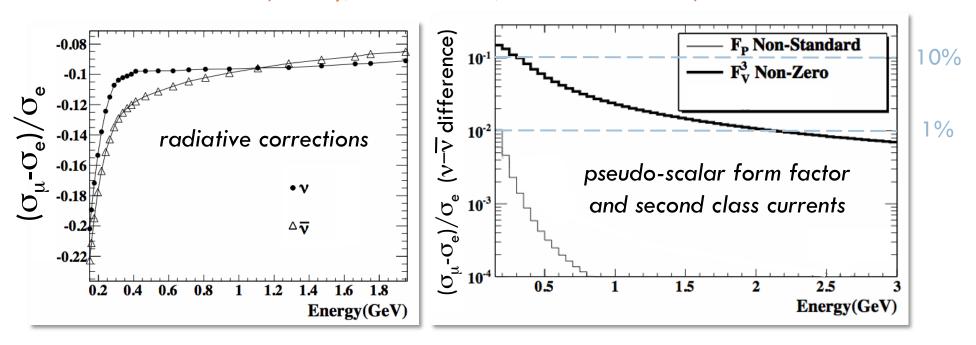
• $\sigma(E_{\nu})$, σ 's for various contributing reactions, and $\overline{\nu}/\nu$ can all of course be constrained with ν_{μ} measurements (e.g., MB, MINER ν A, μ B, etc.)

- weak interaction is flavor universal to infer $\nu_{\rm e}$ from $\nu_{\rm u}$
- given dearth of ν_e measurements, how robust is our knowledge of ν_e/ν_μ ratio? this is something we rely on simulations for ...
- step 1: take into account effect of kinematic limits (m_{lepton})

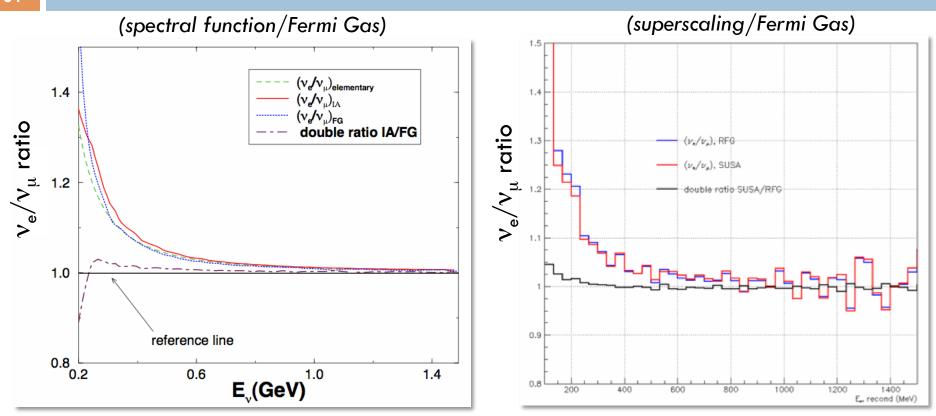
v_e/v_μ Cross Sections

• there are effects <u>not</u> included in event generators that can impact ν_e and ν_μ scattering off nucleons differently (before any nuclear effects are added)

(M. Day, K. McFarland, arXiv:1206.6745)


effect of the FFs on $v_{\rm e}/v_{\mu}$ can be different for neutrinos & antineutrinos

v_e/v_μ Cross Sections

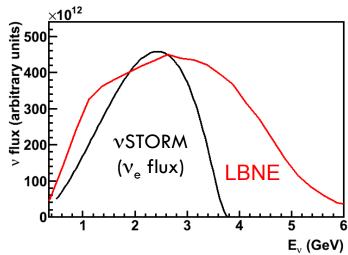

• there are effects <u>not</u> included in event generators that can impact ν_e and ν_u scattering off nucleons differently (before any nuclear effects are added)

(M. Day, K. McFarland, arXiv:1206.6745)

• would be nice to have a high stats sample of v_e to actually test this (i.e., that our procedure for extrapolating from v_μ to v_e is robust)

34

- for standard calcs, up to 5% differences on $\nu_{\rm e}/\nu_{\mu}$ ratio < 200 MeV
- more recent worry: could nuclear effects that we are not presently modeling (e.g., multi-nucleon states) be dramatically different for ν_e vs. ν_μ ?


Conclusions

• a possible σ_v program with vSTORM presents a unique opportunity

- can uniquely measure v_e and v_μ (and \overline{v}) rates in a single experiment only way to get large samples of v_e interactions \rightarrow important calibration source!
- provides a known beam flux and flavor composition very powerful cross-check of existing σ_v knowledge

• covers a similar energy range as LBNE

- would be the 1st $v_{\rm e}$ σ measurements in this region
- existing $v_{\rm e}$, $\overline{v_{\rm e}}$ σ measurements are limited, all at DAR and reactor energies (< 50 MeV)

• would be prudent to have a cross-check on our assumptions about v_e , \overline{v}_e cross sections as we embark on rather ambitious programs to measure MH and \cancel{CP} with long-baseline neutrinos